Papers
Topics
Authors
Recent
2000 character limit reached

A Complete Set of Invariants for LU-Equivalence of Density Operators

Published 13 Jul 2015 in math.RT, math-ph, and math.MP | (1507.03350v9)

Abstract: We show that two density operators of mixed quantum states are in the same local unitary orbit if and only if they agree on polynomial invariants in a certain Noetherian ring for which degree bounds are known in the literature. This implicitly gives a finite complete set of invariants for local unitary equivalence. This is done by showing that local unitary equivalence of density operators is equivalent to local ${\rm GL}$ equivalence and then using techniques from algebraic geometry and geometric invariant theory. We also classify the SLOCC polynomial invariants and give a degree bound for generators of the invariant ring in the case of $n$-qubit pure states. Of course it is well known that polynomial invariants are not a complete set of invariants for SLOCC.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.