Papers
Topics
Authors
Recent
2000 character limit reached

LooseCut: Interactive Image Segmentation with Loosely Bounded Boxes

Published 11 Jul 2015 in cs.CV | (1507.03060v2)

Abstract: One popular approach to interactively segment the foreground object of interest from an image is to annotate a bounding box that covers the foreground object. Then, a binary labeling is performed to achieve a refined segmentation. One major issue of the existing algorithms for such interactive image segmentation is their preference of an input bounding box that tightly encloses the foreground object. This increases the annotation burden, and prevents these algorithms from utilizing automatically detected bounding boxes. In this paper, we develop a new LooseCut algorithm that can handle cases where the input bounding box only loosely covers the foreground object. We propose a new Markov Random Fields (MRF) model for segmentation with loosely bounded boxes, including a global similarity constraint to better distinguish the foreground and background, and an additional energy term to encourage consistent labeling of similar-appearance pixels. This MRF model is then solved by an iterated max-flow algorithm. In the experiments, we evaluate LooseCut in three publicly-available image datasets, and compare its performance against several state-of-the-art interactive image segmentation algorithms. We also show that LooseCut can be used for enhancing the performance of unsupervised video segmentation and image saliency detection.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.