Papers
Topics
Authors
Recent
2000 character limit reached

Geometric Langlands Twists of N = 4 Gauge Theory from Derived Algebraic Geometry

Published 11 Jul 2015 in math-ph, math.AG, math.MP, and math.RT | (1507.03048v4)

Abstract: We develop techniques for describing the derived moduli spaces of solutions to the equations of motion in twists of supersymmetric gauge theories as derived algebraic stacks. We introduce a holomorphic twist of N=4 supersymmetric gauge theory and compute the derived moduli space. We then compute the moduli spaces for the Kapustin-Witten topological twists as its further twists. The resulting spaces for the A- and B-twist are closely related to the de Rham stack of the moduli space of algebraic bundles and the de Rham moduli space of flat bundles, respectively. In particular, we find the unexpected result that the moduli spaces following a topological twist need not be entirely topological, but can continue to capture subtle algebraic structures of interest for the geometric Langlands program.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.