Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Class Regularized Features for Action Recognition (2002.02651v1)

Published 7 Feb 2020 in cs.CV and cs.LG

Abstract: Training Deep Convolutional Neural Networks (CNNs) is based on the notion of using multiple kernels and non-linearities in their subsequent activations to extract useful features. The kernels are used as general feature extractors without specific correspondence to the target class. As a result, the extracted features do not correspond to specific classes. Subtle differences between similar classes are modeled in the same way as large differences between dissimilar classes. To overcome the class-agnostic use of kernels in CNNs, we introduce a novel method named Class Regularization that performs class-based regularization of layer activations. We demonstrate that this not only improves feature search during training, but also allows an explicit assignment of features per class during each stage of the feature extraction process. We show that using Class Regularization blocks in state-of-the-art CNN architectures for action recognition leads to systematic improvement gains of 1.8%, 1.2% and 1.4% on the Kinetics, UCF-101 and HMDB-51 datasets, respectively.

Citations (3)

Summary

We haven't generated a summary for this paper yet.