Papers
Topics
Authors
Recent
2000 character limit reached

End-to-end Convolutional Network for Saliency Prediction

Published 6 Jul 2015 in cs.CV, cs.LG, and cs.NE | (1507.01422v1)

Abstract: The prediction of saliency areas in images has been traditionally addressed with hand crafted features based on neuroscience principles. This paper however addresses the problem with a completely data-driven approach by training a convolutional network. The learning process is formulated as a minimization of a loss function that measures the Euclidean distance of the predicted saliency map with the provided ground truth. The recent publication of large datasets of saliency prediction has provided enough data to train a not very deep architecture which is both fast and accurate. The convolutional network in this paper, named JuntingNet, won the LSUN 2015 challenge on saliency prediction with a superior performance in all considered metrics.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.