Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting gravitational-wave transients at five sigma: a hierarchical approach (1507.00537v2)

Published 2 Jul 2015 in astro-ph.IM and gr-qc

Abstract: As second-generation gravitational-wave detectors prepare to analyze data at unprecedented sensitivity, there is great interest in searches for unmodeled transients, commonly called bursts. Significant effort has yielded a variety of techniques to identify and characterize such transient signals, and many of these methods have been applied to produce astrophysical results using data from first-generation detectors. However, the computational cost of background estimation remains a challenging problem; it is difficult to claim a 5{\sigma} detection with reasonable computational resources without paying for efficiency with reduced sensitivity. We demonstrate a hierarchical approach to gravitational-wave transient detection, focusing on long-lived signals, which can be used to detect transients with significance in excess of 5{\sigma} using modest computational resources. In particular, we show how previously developed seedless clustering techniques can be applied to large datasets to identify high-significance candidates without having to trade sensitivity for speed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.