Papers
Topics
Authors
Recent
2000 character limit reached

Some probability inequalities for multivariate gamma and normal distributions

Published 2 Jul 2015 in math.PR | (1507.00528v1)

Abstract: The Gaussian correlation inequality for multivariate zero-mean normal probabilities of symmetrical n-rectangles can be considered as an inequality for multivariate gamma distributions (in the sense of Krishnamoorthy and Parthasarathy [5]) with one degree of freedom. Its generalization to all integer degrees of freedom and sufficiently large non-integer "degrees of freedom" was recently proved in [10]. Here, this inequality is partly extended to smaller non-integer degrees of freedom and in particular - in a weaker form - to all infinitely divisible multivariate gamma distributions. A further monotonicity property - sometimes called "more PLOD (positively lower orthant dependent)" - for increasing correlations is proved for multivariate gamma distributions with integer or sufficiently large degrees of freedom.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.