Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming (1507.00290v4)

Published 1 Jul 2015 in math.OC

Abstract: In conic linear programming -- in contrast to linear programming -- the Lagrange dual is not an exact dual: it may not attain its optimal value, or there may be a positive duality gap. The corresponding Farkas' lemma is also not exact (it does not always prove infeasibility). We describe exact duals, and certificates of infeasibility and weak infeasibility for conic LPs which are nearly as simple as the Lagrange dual, but do not rely on any constraint qualification. Some of our exact duals generalize the SDP duals of Ramana, and Klep and Schweighofer to the context of general conic LPs. Some of our infeasibility certificates generalize the row echelon form of a linear system of equations: they consist of a small, trivially infeasible subsystem obtained by elementary row operations. We prove analogous results for weakly infeasible systems. We obtain some fundamental geometric corollaries: an exact characterization of when the linear image of a closed convex cone is closed, and an exact characterization of nice cones. Our infeasibility certificates provide algorithms to generate {\em all} infeasible conic LPs over several important classes of cones; and {\em all} weakly infeasible SDPs in a natural class. Using these algorithms we generate a public domain library of infeasible and weakly infeasible SDPs. The status of our instances can be verified by inspection in exact arithmetic, but they turn out to be challenging for commercial and research codes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.