Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application (1506.08567v1)

Published 29 Jun 2015 in math.FA

Abstract: In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-H\"{o}lder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi in General Minkowski type and related inequalities for seminormed fuzzy integrals, Sahand Communications in Mathematical Analysis 1 (2014) 9--20 is not true. Next, we study the Minkowski-H\"{o}lder inequality for the lower Sugeno integral and the class of $\mu$-subadditive functions introduced in On Chebyshev type inequalities for generalized Sugeno integrals, Fuzzy Sets and Systems 244 (2014) 51--62. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed by Borzov\'a-Moln\'arov\'a and et al in The smallest semicopula-based universal integrals I: Properties and characterizations, Fuzzy Sets and Systems 271 (2015) 1--17.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube