Papers
Topics
Authors
Recent
2000 character limit reached

Dyadic data analysis with amen (1506.08237v1)

Published 26 Jun 2015 in stat.CO and stat.ME

Abstract: Dyadic data on pairs of objects, such as relational or social network data, often exhibit strong statistical dependencies. Certain types of second-order dependencies, such as degree heterogeneity and reciprocity, can be well-represented with additive random effects models. Higher-order dependencies, such as transitivity and stochastic equivalence, can often be represented with multiplicative effects. The "amen" package for the R statistical computing environment provides estimation and inference for a class of additive and multiplicative random effects models for ordinal, continuous, binary and other types of dyadic data. The package also provides methods for missing, censored and fixed-rank nomination data, as well as longitudinal dyadic data. This tutorial illustrates the "amen" package via example statistical analyses of several of these different data types.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.