Papers
Topics
Authors
Recent
2000 character limit reached

Properties of Latent Variable Network Models (1506.07806v1)

Published 25 Jun 2015 in stat.ME

Abstract: We derive properties of Latent Variable Models for networks, a broad class of models that includes the widely-used Latent Position Models. These include the average degree distribution, clustering coefficient, average path length and degree correlations. We introduce the Gaussian Latent Position Model, and derive analytic expressions and asymptotic approximations for its network properties. We pay particular attention to one special case, the Gaussian Latent Position Models with Random Effects, and show that it can represent the heavy-tailed degree distributions, positive asymptotic clustering coefficients and small-world behaviours that are often observed in social networks. Several real and simulated examples illustrate the ability of the models to capture important features of observed networks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.