Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 98 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Initializing EM algorithm for univariate Gaussian, multi-component, heteroscedastic mixture models by dynamic programming partitions (1506.07450v2)

Published 24 Jun 2015 in stat.AP

Abstract: Setting initial values of parameters of mixture distributions estimated by using the EM recursive algorithm is very important to the overall quality of estimation. None of the existing methods is suitable for mixtures with large number of components. We present a relevant methodology of estimating initial values of parameters of univariate, heteroscedastic Gaussian mixtures, on the basis of the dynamic programming algorithm for partitioning the range of observations into bins. We evaluate variants of dynamic programming method corresponding to different scoring functions for partitioning. For simulated and real datasets we demonstrate superior efficiency of the proposed method compared to existing techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube