Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application (1506.07199v1)

Published 23 Jun 2015 in math.AP

Abstract: We develop further the theory of symmetrization of fractional Laplacian operators contained in recent works of two of the authors. The theory leads to optimal estimates in the form of concentration comparison inequalities for both elliptic and parabolic equations. In this paper we extend the theory for the so-called \emph{restricted} fractional Laplacian defined on a bounded domain $\Omega$ of $\mathbb RN$ with zero Dirichlet conditions outside of $\Omega$. As an application, we derive an original proof of the corresponding fractional Faber-Krahn inequality. We also provide a more classical variational proof of the inequality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.