The remarkable effectiveness of time-dependent damping terms for second order evolution equations (1506.06915v1)
Abstract: We consider a second order linear evolution equation with a dissipative term multiplied by a time-dependent coefficient. Our aim is to design the coefficient in such a way that all solutions decay in time as fast as possible. We discover that constant coefficients do not achieve the goal, as well as time-dependent coefficients that are too big. On the contrary, pulsating coefficients which alternate big and small values in a suitable way prove to be more effective. Our theory applies to ordinary differential equations, systems of ordinary differential equations, and partial differential equations of hyperbolic type.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.