Papers
Topics
Authors
Recent
2000 character limit reached

Hamiltonian system for the elliptic form of Painlevé VI equation (1506.06545v1)

Published 22 Jun 2015 in math.AG and math.CA

Abstract: In literature, it is known that any solution of Painlev\'{e} VI equation governs the isomonodromic deformation of a second order linear Fuchsian ODE on $\mathbb{CP}{1}$. In this paper, we extend this isomonodromy theory on $\mathbb{CP}{1}$ to the moduli space of elliptic curves by studying the isomonodromic deformation of the generalized Lam\'{e} equation. Among other things, we prove that the isomonodromic equation is a new Hamiltonian system, which is equivalent to the elliptic form of Painlev\'{e} VI equation for generic parameters. For Painlev\'{e} VI equation with some special parameters, the isomonodromy theory of the generalized Lam\'{e} equation greatly simplifies the computation of the monodromy group in $\mathbb{CP}{1}$. This is one of the advantages of the elliptic form.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.