Communication Efficient Distributed Agnostic Boosting (1506.06318v2)
Abstract: We consider the problem of learning from distributed data in the agnostic setting, i.e., in the presence of arbitrary forms of noise. Our main contribution is a general distributed boosting-based procedure for learning an arbitrary concept space, that is simultaneously noise tolerant, communication efficient, and computationally efficient. This improves significantly over prior works that were either communication efficient only in noise-free scenarios or computationally prohibitive. Empirical results on large synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.