Papers
Topics
Authors
Recent
2000 character limit reached

Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models (1506.05275v3)

Published 17 Jun 2015 in stat.ME, math.ST, and stat.TH

Abstract: This paper studies inference of preference parameters in semiparametric discrete choice models when these parameters are not point-identified and the identified set is characterized by a class of conditional moment inequalities. Exploring the semiparametric modeling restrictions, we show that the identified set can be equivalently formulated by moment inequalities conditional on only two continuous indexing variables. Such formulation holds regardless of the covariate dimension, thereby breaking the curse of dimensionality for nonparametric inference based on the underlying conditional moment inequalities. We further apply this dimension reducing characterization approach to the monotone single index model and to a variety of semiparametric models under which the sign of conditional expectation of a certain transformation of the outcome is the same as that of the indexing variable.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.