Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Covering dimension of C*-algebras and 2-coloured classification (1506.03974v3)

Published 12 Jun 2015 in math.OA

Abstract: We introduce the concept of finitely coloured equivalence for unital -homomorphisms between C-algebras, for which unitary equivalence is the 1-coloured case. We use this notion to classify -homomorphisms from separable, unital, nuclear C-algebras into ultrapowers of simple, unital, nuclear, Z-stable C*-algebras with compact extremal trace space up to 2-coloured equivalence by their behaviour on traces; this is based on a 1-coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application we calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, Z-stable C*-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, we derive a "homotopy equivalence implies isomorphism" result for large classes of C*-algebras with finite nuclear dimension.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.