The one-dimensional Euclidean domain: Finitely many obstructions are not enough
Abstract: We show that one-dimensional Euclidean preference profiles can not be characterized in terms of finitely many forbidden substructures. This result is in strong contrast to the case of single-peaked and single-crossing preference profiles, for which such finite characterizations have been derived in the literature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.