Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Recognizing a relatively hyperbolic group by its Dehn fillings (1506.03233v4)

Published 10 Jun 2015 in math.GR and math.GT

Abstract: Dehn fillings for relatively hyperbolic groups generalize the topological Dehn surgery on a non-compact hyperbolic $3$-manifold such as a hyperbolic knot complement. We prove a rigidity result saying that if two non-elementary relatively hyperbolic groups without suitable splittings have sufficiently many isomorphic Dehn fillings, then these groups are in fact isomorphic. Our main application is a solution to the isomorphism problem in the class of non-elementary relatively hyperbolic groups with residually finite parabolic groups and with no suitable splittings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.