Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Height and contour processes of Crump-Mode-Jagers forests (I): general distribution and scaling limits in the case of short edges (1506.03192v3)

Published 10 Jun 2015 in math.PR

Abstract: Crump-Mode-Jagers (CMJ) trees generalize Galton-Watson trees by allowing individuals to live for an arbitrary duration and give birth at arbitrary times during their life-time. In this paper, we are interested in the height and contour processes encoding a general CMJ tree. We show that the one-dimensional distribution of the height process can be expressed in terms of a random transformation of the ladder height process associated with the underlying Lukasiewicz path. As an application of this result, when edges of the tree are "short" we show that, asymptotically, (1) the height process is obtained by stretching by a constant factor the height process of the associated genealogical Galton-Watson tree, (2) the contour process is obtained from the height process by a constant time change and (3) the CMJ trees converge in the sense of finite-dimensional distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.