Papers
Topics
Authors
Recent
2000 character limit reached

Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes (1506.02691v5)

Published 8 Jun 2015 in stat.CO

Abstract: We consider online prediction of a latent dynamic spatiotemporal process and estimation of the associated model parameters based on noisy data. The problem is motivated by the analysis of spatial data arriving in real-time and the current parameter estimates and predictions are updated using the new data at a fixed computational cost. Estimation and prediction is performed within an empirical Bayes framework with the aid of Markov chain Monte Carlo samples. Samples for the latent spatial field are generated using a sampling importance resampling algorithm with a skewed-normal proposal and for the temporal parameters using Gibbs sampling with their full conditionals written in terms of sufficient quantities which are updated online. The spatial range parameter is estimated by a novel online implementation of an empirical Bayes method, called herein sequential empirical Bayes method. A simulation study shows that our method gives similar results as an offline Bayesian method. We also find that the skewed-normal proposal improves over the traditional Gaussian proposal. The application of our method is demonstrated for online monitoring of radiation after the Fukushima nuclear accident.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.