Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model structure on differential graded commutative algebras over the ring of differential operators

Published 28 May 2015 in math.AT, math-ph, math.CT, math.MP, and math.RA | (1505.07720v2)

Abstract: We construct a cofibrantly generated model structure on the category of differential non-negatively graded quasi-coherent commutative $D_X$-algebras, where $D_X$ is the sheaf of differential operators of a smooth afine algebraic variety X. The paper contains an extensive appendix on D-modules, sheaves versus global sections, some more technical model categorical issues, as well as on relative Sullivan algebras. This article is the first of a series of works -located at the interface of homotopical algebra, algebraic geometry, and mathematical physics - on a derived D-geometric approach to the BV-formalism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.