A Distribution Free Unitary Events Method based on Delayed Coincidence Count
Abstract: We investigate several distribution free dependence detection procedures, mainly based on bootstrap principles and their approximation properties. Thanks to this study, we introduce a new distribution free Unitary Events (UE) method, named Permutation UE, which consists in a multiple testing procedure based on permutation and delayed coincidence count. Each involved single test of this procedure achieves the prescribed level, so that the corresponding multiple testing procedure controls the False Discovery Rate (FDR), and this with as few assumptions as possible on the underneath distribution. Some simulations show that this method outperforms the trial-shuffling and the MTGAUE method in terms of single levels and FDR, for a comparable amount of false negatives. Application on real data is also provided.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.