Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Noncommutative Linking Numbers Via the Seiberg-Witten Map (1505.03943v2)

Published 15 May 2015 in hep-th, math-ph, and math.MP

Abstract: In the present work some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three dimensional manifold, it is shown that the effect of noncommutativity is the appearance of $6n$ new knots at the $n$-th order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincar\'e dual to the high-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincar\'e dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincar\'e dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative 'Jones-Witten' invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter, we also show the relation to the noncommutative Landau levels.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.