Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation (1505.03511v1)

Published 13 May 2015 in stat.ML

Abstract: A central goal of neuroscience is to understand how activity in the nervous system is related to features of the external world, or to features of the nervous system itself. A common approach is to model neural responses as a weighted combination of external features, or vice versa. The structure of the model weights can provide insight into neural representations. Often, neural input-output relationships are sparse, with only a few inputs contributing to the output. In part to account for such sparsity, structured regularizers are incorporated into model fitting optimization. However, by imposing priors, structured regularizers can make it difficult to interpret learned model parameters. Here, we investigate a simple, minimally structured model estimation method for accurate, unbiased estimation of sparse models based on Bootstrapped Adaptive Threshold Selection followed by ordinary least-squares refitting (BoATS). Through extensive numerical investigations, we show that this method often performs favorably compared to L1 and L2 regularizers. In particular, for a variety of model distributions and noise levels, BoATS more accurately recovers the parameters of sparse models, leading to more parsimonious explanations of outputs. Finally, we apply this method to the task of decoding human speech production from ECoG recordings.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.