Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MRF Optimization by Graph Approximation (1505.03365v1)

Published 13 May 2015 in cs.CV

Abstract: Graph cuts-based algorithms have achieved great success in energy minimization for many computer vision applications. These algorithms provide approximated solutions for multi-label energy functions via move-making approach. This approach fuses the current solution with a proposal to generate a lower-energy solution. Thus, generating the appropriate proposals is necessary for the success of the move-making approach. However, not much research efforts has been done on the generation of "good" proposals, especially for non-metric energy functions. In this paper, we propose an application-independent and energy-based approach to generate "good" proposals. With these proposals, we present a graph cuts-based move-making algorithm called GA-fusion (fusion with graph approximation-based proposals). Extensive experiments support that our proposal generation is effective across different classes of energy functions. The proposed algorithm outperforms others both on real and synthetic problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.