Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Belief Embedding for Knowledge Base Completion

Published 10 May 2015 in cs.AI | (1505.02433v4)

Abstract: This paper contributes a novel embedding model which measures the probability of each belief $\langle h,r,t,m\rangle$ in a large-scale knowledge repository via simultaneously learning distributed representations for entities ($h$ and $t$), relations ($r$), and the words in relation mentions ($m$). It facilitates knowledge completion by means of simple vector operations to discover new beliefs. Given an imperfect belief, we can not only infer the missing entities, predict the unknown relations, but also tell the plausibility of the belief, just leveraging the learnt embeddings of remaining evidences. To demonstrate the scalability and the effectiveness of our model, we conduct experiments on several large-scale repositories which contain millions of beliefs from WordNet, Freebase and NELL, and compare it with other cutting-edge approaches via competing the performances assessed by the tasks of entity inference, relation prediction and triplet classification with respective metrics. Extensive experimental results show that the proposed model outperforms the state-of-the-arts with significant improvements.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.