2000 character limit reached
Global existence of small equivariant wave maps on rotationally symmetric manifolds (1505.01611v1)
Published 7 May 2015 in math.AP
Abstract: We introduce a class of rotationally invariant manifolds, which we call \emph{admissible}, on which the wave flow satisfies smoothing and Strichartz estimates. We deduce the global existence of equivariant wave maps from admissible manifolds to general targets, for small initial data of critical regularity $H{\frac n2}$. The class of admissible manifolds includes in particular asymptotically flat manifolds and perturbations of real hyperbolic spaces $\mathbb{H}{n}$ for $n\ge3$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.