Papers
Topics
Authors
Recent
2000 character limit reached

A novel variational model for image registration using Gaussian curvature (1504.07643v1)

Published 28 Apr 2015 in math.NA and cs.CV

Abstract: Image registration is one important task in many image processing applications. It aims to align two or more images so that useful information can be extracted through comparison, combination or superposition. This is achieved by constructing an optimal trans- formation which ensures that the template image becomes similar to a given reference image. Although many models exist, designing a model capable of modelling large and smooth deformation field continues to pose a challenge. This paper proposes a novel variational model for image registration using the Gaussian curvature as a regulariser. The model is motivated by the surface restoration work in geometric processing [Elsey and Esedoglu, Multiscale Model. Simul., (2009), pp. 1549-1573]. An effective numerical solver is provided for the model using an augmented Lagrangian method. Numerical experiments can show that the new model outperforms three competing models based on, respectively, a linear curvature [Fischer and Modersitzki, J. Math. Imaging Vis., (2003), pp. 81- 85], the mean curvature [Chumchob, Chen and Brito, Multiscale Model. Simul., (2011), pp. 89-128] and the diffeomorphic demon model [Vercauteren at al., NeuroImage, (2009), pp. 61-72] in terms of robustness and accuracy.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.