Papers
Topics
Authors
Recent
Search
2000 character limit reached

Speeding Up Neural Networks for Large Scale Classification using WTA Hashing

Published 28 Apr 2015 in cs.CV | (1504.07488v1)

Abstract: In this paper we propose to use the Winner Takes All hashing technique to speed up forward propagation and backward propagation in fully connected layers in convolutional neural networks. The proposed technique reduces significantly the computational complexity, which in turn, allows us to train layers with a large number of kernels with out the associated time penalty. As a consequence we are able to train convolutional neural network on a very large number of output classes with only a small increase in the computational cost. To show the effectiveness of the technique we train a new output layer on a pretrained network using both the regular multiplicative approach and our proposed hashing methodology. Our results showed no drop in performance and demonstrate, with our implementation, a 7 fold speed up during the training.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.