Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Nonparametric Nearest Neighbor Random Process Clustering (1504.05059v1)

Published 20 Apr 2015 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: We consider the problem of clustering noisy finite-length observations of stationary ergodic random processes according to their nonparametric generative models without prior knowledge of the model statistics and the number of generative models. Two algorithms, both using the L1-distance between estimated power spectral densities (PSDs) as a measure of dissimilarity, are analyzed. The first algorithm, termed nearest neighbor process clustering (NNPC), to the best of our knowledge, is new and relies on partitioning the nearest neighbor graph of the observations via spectral clustering. The second algorithm, simply referred to as k-means (KM), consists of a single k-means iteration with farthest point initialization and was considered before in the literature, albeit with a different measure of dissimilarity and with asymptotic performance results only. We show that both NNPC and KM succeed with high probability under noise and even when the generative process PSDs overlap significantly, all provided that the observation length is sufficiently large. Our results quantify the tradeoff between the overlap of the generative process PSDs, the noise variance, and the observation length. Finally, we present numerical performance results for synthetic and real data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.