Testing the independence of two random vectors where only one dimension is large (1504.04935v1)
Abstract: For testing the independence of two vectors with respective dimensions $p_1$ and $p_2$, the existing literature in high-dimensional statistics all assume that both dimensions $p_1$ and $p_2$ grow to infinity with the sample size. However, as evidenced in the RNA-sequencing data analysis discussed in the paper, it happens frequently that one of the dimension is quite small and the other quite large compared to the sample size. In this paper, we address this new asymptotic framework for the independence test. A new test procedure is introduced and its asymptotic normality is established when the vectors are normal distributed. A Mote-Carlo study demonstrates the consistency of the procedure and exhibits its superiority over some existing high-dimensional procedures. Applied to the RNA-sequencing data mentioned above, we obtain very convincing results on pairwise independence/dependence of gene isoform expressions as attested by prior knowledge established in that field. Lastly, Monte-Carlo experiments show that the procedure is robust against the normality assumption on the population vectors.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.