Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On estimation of the diagonal elements of a sparse precision matrix (1504.04696v4)

Published 18 Apr 2015 in math.ST, stat.CO, stat.ME, and stat.TH

Abstract: In this paper, we present several estimators of the diagonal elements of the inverse of the covariance matrix, called precision matrix, of a sample of iid random vectors. The focus is on high dimensional vectors having a sparse precision matrix. It is now well understood that when the underlying distribution is Gaussian, the columns of the precision matrix can be estimated independently form one another by solving linear regression problems under sparsity constraints. This approach leads to a computationally efficient strategy for estimating the precision matrix that starts by estimating the regression vectors, then estimates the diagonal entries of the precision matrix and, in a final step, combines these estimators for getting estimators of the off-diagonal entries. While the step of estimating the regression vector has been intensively studied over the past decade, the problem of deriving statistically accurate estimators of the diagonal entries has received much less attention. The goal of the present paper is to fill this gap by presenting four estimators---that seem the most natural ones---of the diagonal entries of the precision matrix and then performing a comprehensive empirical evaluation of these estimators. The estimators under consideration are the residual variance, the relaxed maximum likelihood, the symmetry-enforced maximum likelihood and the penalized maximum likelihood. We show, both theoretically and empirically, that when the aforementioned regression vectors are estimated without error, the symmetry-enforced maximum likelihood estimator has the smallest estimation error. However, in a more realistic setting when the regression vector is estimated by a sparsity-favoring computationally efficient method, the qualities of the estimators become relatively comparable with a slight advantage for the residual variance estimator.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.