Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On commutator length in free groups (1504.04261v5)

Published 16 Apr 2015 in math.GR

Abstract: Let $F$ be a free group. We present for arbitrary $g\in\mathbb{N}$ a LogSpace (and thus polynomial time) algorithm that determines whether a given $w\in F$ is a product of at most $g$ commutators; and more generally an algorithm that determines, given $w\in F$, the minimal $g$ such that $w$ may be written as a product of $g$ commutators (and returns $\infty$ if no such $g$ exists). The algorithm also returns words $x_1,y_1,\dots,x_g,y_g$ such that $w=[x_1,y_1]\cdots[x_g,y_g]$. The algorithms we present are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a conjecture by Bardakov.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube