Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-similar Magneto-electric Nanocircuit Technology for Probabilistic Inference Engines

Published 15 Apr 2015 in cs.ET | (1504.04056v1)

Abstract: Probabilistic graphical models are powerful mathematical formalisms for machine learning and reasoning under uncertainty that are widely used for cognitive computing. However they cannot be employed efficiently for large problems (with variables in the order of 100K or larger) on conventional systems, due to inefficiencies resulting from layers of abstraction and separation of logic and memory in CMOS implementations. In this paper, we present a magneto-electric probabilistic technology framework for implementing probabilistic reasoning functions. The technology leverages Straintronic Magneto-Tunneling Junction (S-MTJ) devices in a novel mixed-signal circuit framework for direct computations on probabilities while enabling in-memory computations with persistence. Initial evaluations of the Bayesian likelihood estimation operation occurring during Bayesian Network inference indicate up to 127x lower area, 214x lower active power, and 70x lower latency compared to an equivalent 45nm CMOS Boolean implementation.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.