Papers
Topics
Authors
Recent
2000 character limit reached

On one real basis for $L^2(Q_p)$ (1504.03624v1)

Published 14 Apr 2015 in math-ph and math.MP

Abstract: We construct new bases of real functions from $L{2}\left(B_{r}\right)$ and from $L{2}\left(\mathbb{Q}_{p}\right)$. These functions are eigenfunctions of the $p$-adic pseudo-differential Vladimirov operator, which is defined on a compact set $B_{r}\subset\mathbb{Q}{p}$ of the field of $p$-adic numbers $\mathbb{Q}{p}$ or, respectively, on the entire field $\mathbb{Q}{p}$. A relation between the basis of functions from $L{2}\left(\mathbb{Q}{p}\right)$ and the basis of $p$-adic wavelets from $L{2}\left(\mathbb{Q}_{p}\right)$ is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator, which is diagonal in the basis constructed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.