Maximum entropy properties of discrete-time first-order stable spline kernel (1504.03253v1)
Abstract: The first order stable spline (SS-1) kernel is used extensively in regularized system identification. In particular, the stable spline estimator models the impulse response as a zero-mean Gaussian process whose covariance is given by the SS-1 kernel. In this paper, we discuss the maximum entropy properties of this prior. In particular, we formulate the exact maximum entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under general sampling schemes, we also explicitly derive the special structure underlying the SS-1 kernel (e.g. characterizing the tridiagonal nature of its inverse), also giving to it a maximum entropy covariance completion interpretation. Along the way similar maximum entropy properties of the Wiener kernel are also given.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.