2000 character limit reached
Scattering for the focusing $L^{2}$ -supercritical and $\dot H^2$-subcritical biharmonic NLS Equations (1504.02853v1)
Published 11 Apr 2015 in math.AP
Abstract: We consider the focusing $\dot H{s_c}$-critical biharmonic Schr\"odinger equation, and prove a global wellposedness and scattering result for the radial data $u_0\in H2(\mathbb RN)$ satisfying $ M(u_0){\frac{2-s_c}{s_c}}E(u_0)<M(Q){\frac{2-s_c}{s_c}}E(Q) $ and $ |u_{0}|{\frac{2-s_c}{s_c}}_{2}|\Delta u_{0}|{2}<|Q|{\frac{2-s_c}{s_c}}{2}|\Delta Q|_{2}, $ where $s_c\in(0,2)$ and $Q$ is the ground state of $\Delta2Q+(2-s_c)Q-|Q|{p-1}Q=0$.