Sharp Threshold of Blow-up and Scattering for the fractional Hartree equation (1705.08615v3)
Abstract: We consider the fractional Hartree equation in the $L2$-supercritical case, and we find a sharp threshold of the scattering versus blow-up dichotomy for radial data: If $ M[u_{0}]{\frac{s-s_c}{s_c}}E[u_{0}<M[Q]{\frac{s-s_c}{s_c}}E[Q]$ and $M[u_{0}]{\frac{s-s_c}{s_c}}|u_{0}|2_{\dot Hs}<M[Q]{\frac{s-s_c}{s_c}}| Q|2_{\dot Hs}$, then the solution $u(t)$ is globally well-posed and scatters; if $ M[u_{0}]{\frac{s-s_c}{s_c}}E[u_{0}]<M[Q]{\frac{s-s_c}{s_c}}E[Q]$ and $M[u_{0}]{\frac{s-s_c}{s_c}}|u_{0}|2_{\dot Hs}>M[Q]{\frac{s-s_c}{s_c}}| Q|2_{\dot Hs}$, the solution $u(t)$ blows up in finite time. This condition is sharp in the sense that the solitary wave solution $e{it}Q(x)$ is global but not scattering, which satisfies the equality in the above conditions. Here, $Q$ is the ground-state solution for the fractional Hartree equation.