Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Potential Errors and Test Assessment in Software Product Line Engineering (1504.02443v1)

Published 9 Apr 2015 in cs.SE

Abstract: Software product lines (SPL) are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.

Citations (3)

Summary

We haven't generated a summary for this paper yet.