Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Three-Operator Splitting Scheme and its Optimization Applications (1504.01032v1)

Published 4 Apr 2015 in math.OC

Abstract: Operator splitting schemes have been successfully used in computational sciences to reduce complex problems into a series of simpler subproblems. Since 1950s, these schemes have been widely used to solve problems in PDE and control. Recently, large-scale optimization problems in machine learning, signal processing, and imaging have created a resurgence of interest in operator-splitting based algorithms because they often have simple descriptions, are easy to code, and have (nearly) state-of-the-art performance for large-scale optimization problems. Although operator splitting techniques were introduced over 60 years ago, their importance has significantly increased in the past decade. This paper introduces a new operator-splitting scheme for solving a variety of problems that are reduced to a monotone inclusion of three operators, one of which is cocoercive. Our scheme is very simple, and it does not reduce to any existing splitting schemes. Our scheme recovers the existing forward-backward, Douglas-Rachford, and forward-Douglas-Rachford splitting schemes as special cases. Our new splitting scheme leads to a set of new and simple algorithms for a variety of other problems, including the 3-set split feasibility problems, 3-objective minimization problems, and doubly and multiple regularization problems, as well as the simplest extension of the classic ADMM from 2 to 3 blocks of variables. In addition to the basic scheme, we introduce several modifications and enhancements that can improve the convergence rate in practice, including an acceleration that achieves the optimal rate of convergence for strongly monotone inclusions. Finally, we evaluate the algorithm on several applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube