Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Novel Sparsity-Based Approach to Recursive Estimation of Dynamic Parameter Sets (1504.00600v1)

Published 2 Apr 2015 in stat.CO, math.ST, and stat.TH

Abstract: We consider the problem of estimating a variable number of parameters with a dynamic nature. A familiar example is finding the position of moving targets using sensor array observations. The problem is challenging in cases where either the observations are not reliable or the parameters evolve rapidly. Inspired by the sparsity based techniques, we introduce a novel Bayesian model for the problems of interest and study its associated recursive Bayesian filter. We propose an algorithm approximating the Bayesian filter, maintaining a reasonable amount of calculations. We compare by numerical evaluation the resulting technique to state-of-the-art algorithms in different scenarios. In a scenario with a low SNR, the proposed method outperforms other complex techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.