Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials

Published 31 Mar 2015 in math-ph and math.MP | (1503.09128v3)

Abstract: In this paper an asymptotic homogenization method for the analysis of composite materials with periodic microstructure in presence of thermodiffusion is described. Appropriate down-scaling relations correlating the microscopic fields to the macroscopic displacements, temperature and mass concentration are introduced. The effects of the material inhomogeneities are described by perturbation functions derived from the solution of recursive cell problems. Exact expressions for the overall elastic and thermodiffusive constants of the equivalent first order thermodiffusive continuum are derived. The proposed approach is applied to the case of a two-dimensional bi-phase orthotropic layered material, where the effective elastic and thermodiffusive properties can be determined analytically. Considering this illustrative example and assuming periodic body forces, heat and mass sources acting on the medium, the solution performed by the first order homogenization approach is compared with the numerical results obtained by the heterogeneous model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.