Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparse Spikes Deconvolution on Thin Grids

Published 30 Mar 2015 in cs.IT, math.IT, and math.OC | (1503.08577v1)

Abstract: This article analyzes the recovery performance of two popular finite dimensional approximations of the sparse spikes deconvolution problem over Radon measures. We examine in a unified framework both the L1 regularization (often referred to as Lasso or Basis-Pursuit) and the Continuous Basis-Pursuit (C-BP) methods. The Lasso is the de-facto standard for the sparse regularization of inverse problems in imaging. It performs a nearest neighbor interpolation of the spikes locations on the sampling grid. The C-BP method, introduced by Ekanadham, Tranchina and Simoncelli, uses a linear interpolation of the locations to perform a better approximation of the infinite-dimensional optimization problem, for positive measures. We show that, in the small noise regime, both methods estimate twice the number of spikes as the number of original spikes. Indeed, we show that they both detect two neighboring spikes around the locations of an original spikes. These results for deconvolution problems are based on an abstract analysis of the so-called extended support of the solutions of L1-type problems (including as special cases the Lasso and C-BP for deconvolution), which are of an independent interest. They precisely characterize the support of the solutions when the noise is small and the regularization parameter is selected accordingly. We illustrate these findings to analyze for the first time the support instability of compressed sensing recovery when the number of measurements is below the critical limit (well documented in the literature) where the support is provably stable.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.