Sign rank versus VC dimension
Abstract: This work studies the maximum possible sign rank of $N \times N$ sign matrices with a given VC dimension $d$. For $d=1$, this maximum is {three}. For $d=2$, this maximum is $\tilde{\Theta}(N{1/2})$. For $d >2$, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an $O(N/\log(N))$ multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the $N \times N$ adjacency matrix of a $\Delta$ regular graph with a second eigenvalue of absolute value $\lambda$ and $\Delta \leq N/2$. We show that the sign rank of the signed version of this matrix is at least $\Delta/\lambda$. We use this connection to prove the existence of a maximum class $C\subseteq{\pm 1}N$ with VC dimension $2$ and sign rank $\tilde{\Theta}(N{1/2})$. This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.