Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Calabi-Yau manifolds realizing symplectically rigid monodromy tuples (1503.07500v4)

Published 25 Mar 2015 in math.AG

Abstract: We define an iterative construction that produces a family of elliptically fibered Calabi-Yau $n$-folds with section from a family of elliptic Calabi-Yau varieties of one dimension lower. Parallel to the geometric construction, we iteratively obtain for each family with a point of maximal unipotent monodromy, normalized to be at t=0, its Picard-Fuchs operator and a closed-form expression for the period holomorphic at t=0, through a generalization of the classical Euler transform for hypergeometric functions. In particular, our construction yields one-parameter families of elliptically fibered Calabi-Yau manifolds with section whose Picard-Fuchs operators realize all symplectically rigid Calabi-Yau differential operators with three regular singular points classified by Bogner and Reiter, but also non-rigid operators with four singular points.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube