Hitting times asymptotics for hard-core interactions on grids
Abstract: We consider the hard-core model with Metropolis transition probabilities on finite grid graphs and investigate the asymptotic behavior of the first hitting time between its two maximum-occupancy configurations in the low-temperature regime. In particular, we show how the order-of-magnitude of this first hitting time depends on the grid sizes and on the boundary conditions by means of a novel combinatorial method. Our analysis also proves the asymptotic exponentiality of the scaled hitting time and yields the mixing time of the process in the low-temperature limit as side-result. In order to derive these results, we extended the model-independent framework in [27] for first hitting times to allow for a more general initial state and target subset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.