2000 character limit reached
The Chern-Gauss-Bonnet formula for singular non-compact four-dimensional manifolds (1503.06602v2)
Published 23 Mar 2015 in math.DG
Abstract: We generalise the classical Chern-Gauss-Bonnet formula to a class of 4-dimensional manifolds with finitely many conformally flat ends and singular points. This extends results of Chang-Qing-Yang in the smooth case. Under the assumptions of finite total Q curvature and positive scalar curvature at the ends and at the singularities, we obtain a new Chern-Gauss-Bonnet formula with error terms that can be expressed as isoperimetric deficits. This is the first such formula in a dimension higher than two which allows the underlying manifold to have isolated branch points or conical singularities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.