Papers
Topics
Authors
Recent
2000 character limit reached

Stable generalized complex structures

Published 21 Mar 2015 in math.DG, hep-th, and math.SG | (1503.06357v1)

Abstract: A stable generalized complex structure is one that is generically symplectic but degenerates along a real codimension two submanifold, where it defines a generalized Calabi-Yau structure. We introduce a Lie algebroid which allows us to view such structures as symplectic forms. This allows us to construct new examples of stable structures, and also to define period maps for their deformations in which the background three-form flux is either fixed or not, proving the unobstructedness of both deformation problems. We then use the same tools to establish local normal forms for the degeneracy locus and for Lagrangian branes. Applying our normal forms to the four-dimensional case, we prove that any compact stable generalized complex 4-manifold has a symplectic completion, in the sense that it can be modified near its degeneracy locus to produce a compact symplectic 4-manifold.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.